Нервная система как система защиты от опасности (часть 2)
Зрительный анализатор обладает наибольшей величиной адаптации. При темновой адаптации чувствительность достигает некоторого оптимального уровня через 40–50 мин; световая адаптация, т.е. понижение чувствительности, длится 8–10 мин. Глаз непосредственно реагирует на яркость, которая представляет отношение силы света (интенсивности), излучаемой данной поверхностью, к площади этой поверхности. Яркость измеряется в нитах (нт; nt ); I нт = I кд/м2 . При очень больших яркостях (более 30 000 нт) возникает эффект ослепления. Гигиенически приемлема яркость до 5000 нт.
Под контрастом понимается степень воспринимаемого различия между двумя яркостями, разделенными в пространстве или времени. Контрастная чувствительность позволяет ответить на вопрос, насколько объект должен отличаться по яркости от фона, чтобы его было видно.
При оценке восприятия пространственных характеристик основным понятием является острота зрения, которая характеризуется минимальным углом, под которым две точки видны как раздельные. Острота зрения зависит от освещенности, контрастности, формы объекта и других факторов. С увеличением освещенности острота зрения возрастает. При уменьшении контрастности острота зрения снижается. Острота зрения зависит также от места проекции изображения на сетчатке глаза. Оптический анализатор включает два типа рецепторов: колбочки и палочки. Первые являются аппаратом хроматического зрения, вторые ― ахроматического. При равенстве энергии воздействующих волн различия их длин ощущаются как различия в свете источников света или поверхностей предметов, которые его отражают. Глаз различает семь основных цветов и более сотни их оттенков. Цветовые ощущения вызываются воздействием световых волн, имеющих длину от 380 до 780 нм. Приблизительные границы длин и соответствующие им ощущения (цвета) следующие:
380–455 нм (фиолетовый);
455–470 нм (синий);
470-500 (голубой);
500-550 (зеленый);
540-590 (желтый);
590-610 (оранжевый);
610-780 (красный).
Зрительный анализатор обладает определенной спектральной чувствительностью, которая характеризуется относительной видностью монохроматического излучения. Наибольшая видность днем соответствует желтому цвету, а ночью или в сумерках ― зелено–голубому. Гамма переходов от белого цвета к черному образует ахроматический ряд.
Ощущение, вызванное световым сигналом, в течение определенного времени сохраняется, несмотря на исчезновение сигнала или изменение его характеристик. Инерция зрения по данным различных исследователей находится в пределах 0,1–0,3 с. Ощущения, возникающие после снятия раздражителя, называются последовательными образами. При коротком ярком сигнале образ выступает из темноты несколько раз в быстрой последовательности. При небольших яркостях через 0,5–1,5 с появляется отрицательный последовательный образ (т.е. светлые поверхности кажутся темными и наоборот). При цветном сигнале образ окрашен в дополнительный цвет. При резком действии прерывистого раздражителя возникает ощущение мельканий, которые при определенной частоте сливаются в ровный немигающий свет. Частота, при которой мелькания исчезают, называется критической частотой слияния мельканий. В том случае, когда мелькания света используются в качестве сигнала, возникает вопрос о выборе оптимальной частоты. Оптимальной является частота в пределах 3–10 Гц. Инерция зрения обусловливает стробоскопический эффект. Если время, разделяющее дискретные акты наблюдения, меньше времени гашения зрительного образа, то наблюдение субъективно ощущается как непрерывное. При стробоскопическом эффекте возможна иллюзия движения при прерывистом наблюдении отдельных объектов или иллюзия неподвижности (замедленного движения), возникающая, когда движущийся предмет периодически занимает прежнее положение. При восприятии объектов в двухмерном и трехмерном пространстве различают поле зрения и глубинное зрение. Бинокулярное поле зрения охватывает в горизонтальном направлении 120–160°, по вертикали вверх ― 55–60° и вниз ― 65–72°. При восприятии цвета размер поля зрения сужается.. Зона оптимальной видимости ограничена полем: вверх ― 25°, вниз — 35°, вправо и влево по 32°. Глубинное зрение связано с восприятием пространства. Ошибка оценки абсолютной удаленности на расстоянии до 30 м равна в среднем 12 % общего расстояния.
Слуховой анализатор. Звуковые сигналы доставляют человеку значительную часть информации. Они могут служить для передачи сигналов опасности. В свою очередь, акустическая обстановка в известной мере определяет условия безопасности. Основными параметрами звуковых волн являются уровень интенсивности и частота, которые субъективно в слуховых ощущениях воспринимаются как громкость и высота. По частоте область слуховых ощущений простирается от 16–20 до 20000–22000 Гц. Величина порога слышимости зависит от частоты ощущаемых звуков. Верхней границей является порог болевого ощущения, который в меньшей степени зависит от частоты и лежит в пределах 130–140 дБ. Соотношение уровня интенсивности и частоты определяет ощущение громкости звука. Экспериментально установлено, что человек оценивает как равногромкие звуки, имеющие различную частоту и интенсивность. Наблюдается как бы взаимная компенсация интенсивности частотой. Эта закономерность хорошо иллюстрируется кривыми равной громкости. Абсолютный дифференциальный порог равен примерно 2–3 Гц. Относительный дифференциальный порог является почти постоянным и равен 0,002. В реальных условиях человек, воспринимает звуковые сигналы на определенном акустическом фоне. При этом фон может маскировать полезный сигнал. Эффект маскировки в охране труда имеет двоякое значение. При разработке и конструировании акустических индикаторов необходимо предусматривать меры борьбы с этим эффектом. В некоторых случаях эффект маскировки может быть использован для улучшения акустической обстановки. Так, известно, что имеется тенденция маскировки высокочастотного тона низкочастотным, который менее вреден для человека.
Вибрационная чувствительность. Вибрация высокой интенсивности при продолжительном воздействии приводит к серьезным изменениям деятельности всех систем организма и при определенных условиях может вызвать тяжелое заболевание. При небольшой интенсивности и длительности воздействия вибрация может быть полезна, уменьшает утомляемость, повышает обмен веществ, увеличивает мышечную силу.
Специальные анализаторы, воспринимающие вибрацию, неизвестны. Существует несколько гипотез о природе вибрационной чувствительности. Диапазон ощущений вибрации высок: от 1 до 10 000 Гц. Наиболее высока чувствительность к частотам 200–250 Гц. При их увеличении и уменьшении вибрационная чувствительность снижается. Пороги вибрационной чувствительности различны для различных участков тела. Наибольшей чувствительностью обладают дистальные участки тела человека, т.е. те, которые более удалены от его медианной плоскости (например, кисти рук).
Тактильный анализатор. Тактильный анализатор воспринимает ощущения, возникающие при действии на кожную поверхность различных механических стимулов (прикосновение, давление). Абсолютный порог тактильной чувствительности определяется по тому минимальному давлению предмета на кожную поверхность, которое производит едва заметное ощущение прикосновения. Наиболее высоко развита чувствительность на дистальных частях тела.
Примерные пороги ощущения:
- для кончиков пальцев руки 3 г/мм2,
- на тыльной стороне пальца 5 г/мм2,
- на тыльной стороне кисти 12 г/мм2,
- на животе 26 г/мм2,
- на пятке 250 г/мм2.
Порог различия в среднем равен примерно 0,07 исходной величины давления. Тактильный анализатор обладает высокой способностью к пространственной локализации. Временной порог тактильной чувствительности менее 0,1 с. Характерной особенностью тактильного анализатора является быстрое развитие адаптации, т.е. исчезновение чувства прикосновения или давления.